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Abstract-Understanding the patterns of flow induced by geothermal sources in deep ground is still a 
problem, although the basic hydraulic regimes are identified. The interaction of flow and heat-transport 
results in different flow phenomena depending on the variability and range of the parameters involved. A 

qualitative and quantitative characterization is given in this paper. 

1. lldTRoDucTim 

The focus of researchers in the past lay on convection 
between horizontal isothermal boundaries in a system 
which would be hydrostatic if the temperatures were 
constant on both boundaries. In fact, this is the situ- 
ation of the Benard experiment with the difference 
that a porous medium fills the containment-not pure 
fluids. It was predicted by theoretical derivations [l] 
and confnmed by laboratory and numerical exper- 
iments that the hydrodynamical behaviour is deter- 
mined by the Rayleigh number Ra only. If Ra for a 
specific system exceeds a critical value, convection 
will set in. Otherwise it will move into a hydrostatic 
situation. 

This phenomenon is referred to as natural con- 
vection [2] or free convection. The latter term was 
taken from turbulent shear flow : “‘free convection” 
occurs in a range where the contribution to the vertical 
transfer of momentum and heat by mechanical tur- 
bulence can be neglected compared to those carried 
by convection’ [3]. Forced convection, in contrast, 
occurs when the generation of turbulence by the shear 
dominates over the generation by buoyancy. 

In the case of porous media turbulence is mostly 
not relevant, but there is a similar situation of practical 
importance, when a hydraulic gradient at the upper 
boundary is introduced in a geothermal system-a 
situation which is referred to as combined forced and 
free convection [4] or mixed convection [S]. Prats [6] 
showed that the characteristic behaviour does not 
change in this case : the Rayleigh number remains the 
only physical parameter determining the hydro- 
dynamics or -statics of the system. 

In this paper it will be shown that this result depends 
on the very specific conditions of the system tackled 
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by Prats: (1) that it is infinite and (2) that the heat 
source is continuously distributed on the entire lower 
boundary of the porous medium layer. Both con- 
ditions are never fulliIled in real systems. Numerical 
experiments on a finite system and a finite location of 
the heat source show that, in the case of forced and 
free convection, the hydraulic gradient has an influ- 
ence on convection-additional to the influence of the 
Rayleigh number. 

For a constant velocity field v Prats [6] derived 
solutions from the stationary cells of the free con- 
vection case under the condition that the system has 
infinite length. If the x-axis is chosen in the direction 
of v the mixed convection steady state can be derived 
by replacing the x-coordinate of the free convection 
solution by x-vt, i.e. by connecting with a moving 
coordinate system. It is obvious that this procedure 
cannot be applied as well when there are vertical 
boundaries somewhere. 

2. BEPEREWCE CASE DE- 

The reference case for the calculations was a sim- 
plified but ideal typical situation presented by Yusa 
[7]. A confined, homogeneous and isotropic aquifer 
of 1000 m depth is considered. From an isothermal 
source at the bottom with 1000 m length, the aquifer 
extends 5000 m. The relevant characterizing par- 
ameters of fluid and porous medium are listed in 
Table 1. Fluid properties besides density were 
assumed to be constant. Density decrease is assumed 
to be linear in the temperature range between 
T,, = 20°C and T, = 250°C: 

p = p0 -A@ 

with normalized temperature 

T-T, @=- 
T, - To 
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NOMENCLATURE 

a viscosity slope parameter Greek symbols 
(see below) ratio of heat capacities (see below) 

C specific heat & maximum density difference 

9 constant of gravity Ax horizontal grid spacing 
g vector of gravity (in direction (for equidistant grid) 

of gravity with length g) AZ vertical grid spacing 
H height (for equidistant grid) 
k permeability CD porosity 
L length K thermal diffusivity 
t time P dynamic viscosity 
P (total) pressure PL,,f reference viscosity (corresponding 
Ra Rayleigh number (see below) to 64 
T temperature 0 normalized temperature (see below) 
Tll low temperature at boundary e ref reference normalized temperature 
T1 high temperature at 4 viscosity increment parameter 

boundary (see below) 
V vector of Darcy velocity P fluid density 

(with components v,, v,) PO fluid density at low temperature To 
vb horizontal component of Darcy dimensionless time 

velocity at upper boundary & streamfunction. 
X horizontal space variable 
Z vertical space variable (in direction Subscript 

of gravity). m for aquifer characteristic. 

Table 1. Characteristic properties of the fluid and the aquifer 

H height 1000 m 
AP fluid density difference 230 kg rnm3, 

: 
dynamic viscosity 2 x 10e4 kg m-’ s? 
permeability lo-l4 mz 

K thermal diffusivity 10m6 m* s-’ 
Y heat capacities ratio ( PC/P~C,,,) 2 

3. ANALYTICAL FOflMULATKlN 

The continuity equations for flow and heat, applying 
Darcy’s Law for fluid flow and Fourier’s Law for heat 
flow are transformed into a set of two equations in 
two (dimensionless) space variables. Additionally the 
streamfunction Y is introduced under the condition 
that the Boussinesq assumption is valid. The details 
are noted by Yusa [7], but it is worth mentioning an 
alternative time transformation : 

t-t = tK/@ 

where y appears in the denominator in contrast to 
Yusa’s transformation rule. 

This leads to the following set of equations : 

ao 
div (grad Y) = yRa ax 

(W 

div (grad 0) - v grad 0 = i 2 

with Rayleigh number Ra defined as 

Ra = kgApH 
W . 

The variables used in Yusa [7] transform into the 
ones of equations (X) as follows : 

r-r/y v-v/y Y-Y/y. 

The steady-state equations of(X) were used first by 
Wooding [8], later by Elder [9] for numerical simu- 
lations. The system (X) is implemented in the finite 
difference code FAST_C(2D) [lo], which was used 
for computer simulations here. 

The boundary conditions in the dimensionless 
equations (X) are summarized in Table 2. 

Taking the specified values for the parameters, the 
factor of time transformation is 0.5 x lo-‘* and the 
Rayleigh number becomes 113. 

Variations of the reference case were made by Yusa 
[7] concerning the piezometric head gradient at the 
top of the model. In the following these will be referred 
to as low (1 var.), medium (2 var.) and high (3 var.) 
velocity variations. They are characterized by 
hydraulic gradients of 1, 3 or 5%, respectively, at the 
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Table 2. Boundary conditions for reference case of length L 

Flow Heat 

Vertical boundaries Y=O 
ao 
ax= 

0 

Top boundary 
ay -_=O 
aZ 

o=o 

Bottom boundary Y=O g = 0 for x&[O,L-H] 

0 = 1 for x E[L--H&J 
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top of the aquifer. These gradients transform into 
specified values for dY/dz at the top boundary (4.9, 
14.7 and 29.5 using Yusa’s transformation, respec- 
tively, 9.8, 29.4 and 49.0 transforming as noted 
above). 

4. SMULATIONS WITH FAST_C(ZDi CODE 

The FAST_C(2D) code is based on a finite-differ- 
ence-finite-volume discretization of equations (X) for 
two-dimensional irregular rectangular grids [lo]. 
First-order equations are discretized by the upwind 
scheme. Timestepping is implemented as a gen- 
eralization of the Crank-Nicolson method with a 
user-defined time level weighting factor. The non- 
linear set of equations is solved by a Piccard inner 
iteration algorithm, where flow and transport are 
solved iteratively until a specified accuracy E is 
reached. The solvers for the linear systems can be 
chosen out of various conjugate gradient (CG) 
methods (here with preconditioning). 

For the calculations of this paper the Crank- 
Nicolson method was chosen to solve the O-equation 
of system (X). The calculations were done on a NEC- 
H9870 personal computer and execution time for all 
simulations was around 90 min for an inner iteration 
accuracy 10m4. 

Numerical calculations were done with a fixed 
length of the aquifer (L = 5000 m or L = 4000 m). It 
was observed for this choice of L that the far (from 
source) boundary condition did not have an influence 
on flow and temperature distributions in the vicinity 
of the geothermal source. Thus the change of the 
hydraulic boundary condition or a prolongation of 
the model would not alter the thermal convec- 
tion pattern. The grid was chosen equidistant with 
100 x 20 blocks for 5000 m length (80 x 20 for L = 
4000 m) 

The computer model simulates the transient devel- 
opment of the physical model. The initial state is the 
hydrostatic case with constant cold temperature or 
0 = 0. The simulation was stopped when the system 
showed only marginal changes: then the solution is 
nearly steady state. In some cases the change of vari- 
ables did not decrease, not even if the simulation time 

was increased : no steady state exists. The usual end 
of simulation time corresponds to 5000 years in real 
dimensions. 

The results for the reference case and the variations 
are shown in Figs. 14. In Figs. 1,2 and 4 the system 
is in steady state ; in Fig. 3 it is transient. The pictures 
show streamlines (thin lines) and isotherms (thick 
lines). Isotherms are plotted for O-values 0.2,0.4, 0.6 
and 0.8. Plotted streamline levels are equidistant. 

Comparison with Yusa [7] shows that the results 
are qualitatively the same. The four cases show differ- 
ent flow patterns depending on the velocity prescribed 
at the upper boundary. They can be classified as fol- 
lows : 

Ref.case (zero velocity) -+ one steady convection cell 
1 var. (low velocity) -+ three steady convection cells 
2 var. (medium velocity) 

-+ fluctuating convection eddies 
3 var. (high velocity) -+ no convection. 

The transient development in the reference case 
shows the emergence of an ascending flow region 
above the heat source which moves horizontally to 
the closed (right) boundary, until there remains only 
one convection cell with hot water rising at the vertical 
system boundary. Both numerical simulations show 
this same characteristic behaviour. 

In the 1 variation with prescribed low velocity at 
the upper boundary the ascending flow region which 
appears first does not move to the boundary, where 
instead another hot water zone emerges. In between 
the two ascending water regions the third convection 
cell with opposite rotation (clockwise) appears. One 
major discrepancy can be observed by comparing both 
simulations : in Yusa’s calculations the emergence of 
the second ascending region is between 2000 and 3000 
years, while it appears after 4000 years in FAST_ 
C(2D) output. Results for transient and steady-state 
reference cases and steady-state of the 1 variation case 
were also well published by Yano [ 111. The output of 
the finite-element simulation is very much the same as 
the ones presented here. 

The 2 variation has no steady state, as both numeri- 
cal simulations demonstrate. There is hot water mov- 
ing with the overlying flow field. From there unstable 
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Direction of flow * 

Fig. 1. Steady-state solution of reference case. 

Fig. 2. Steady-state solution of 1 variation (low velocity). 

Fig. 3. Transient solution of 2 variation (medium velocity). 

Fig. 4. Steady-state solution of 3 variation (high velocity). 

hot plumes emerge. The pattern of these ‘transients’ 
is quite different in both simulations. The differences 
can be attributed to discrepancies in discretization (see 
part 5). The 3 variation has a non-convective steady- 
state solution, as the numerical results show. Here the 
flow field, which is induced by the upper boundary 
condition is so strong that hot water does not rise 
(except from the left vertical boundary, where the 
overlying flow itself turns upward). There are differ- 
ences in numerical output concerning the temperature 

decrease with distance from the source, which are 
caused by numerical dispersion (see below). 

5. EFFECTS OF WCRETKAmN 

Differences between the simulations by Yusa [7] 
and FAST_C(2D) can mostly be attributed to 
differences in the discretization. Yusa used a finer grid 
(200 x 40 blocks) on a mainframe and applied central- 
in-space (CIS) finite differencing for the 1 .order terms. 
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streamfunction 

Fig. 5. Steady-state solution of reference case with variable viscosity. 

The disadvantage of the CIS-method is that there arise 
stability problems, while the BIS-(backward-in-space) 
or upwind-scheme is unconditionally stable. The 
latter, which is implemented in FAST_C(2D) code, 
introduces increased numerical dispersion E into the 
system. The first order approximation of numerical 
dispersion (truncation error) in the x-direction is 
v,Ax/2 [ 12]-analogous for the z-direction : @z/2. 
Thus at the top boundary E becomes 0.245 for the 1 
variation, 0.738 for the 2 variation and 1.225 for the 
3 variation cases [in the dimensionless system (X)]. 
These values have to be added to diffusivity K = 1 in 
the transformed system. 

Thus the diffusion-dispersion of the physical 
system, simulated by FAST_C(ZD), is much higher. 
This explains why transients vanish much earlier and 
why temperature decrease from the source in the 
upwind scheme simulations is higher-even in hot 
spots. 

6. EFFECT OF CHANGING VIscoSITY 
It was remarked already by Kassoy and Zebib [13] 

and later by Straus and Schubert [14], that viscosity 
varies tremendously in the mentioned temperature 
range. Additional simulations were done with 
FAST_C(2D) to examine whether it makes a differ- 
ence when viscosity changes are taken into account. 
It is assumed that Ra is determined further on with 
the same reference value for dynamic viscosity pref. 

Then the equation 

div (grad Y) = yRa’*“’ ao 
P ax 

replaces the first equation of (X). Within the simu- 
lations p is evaluated as a function of 0 : 

14% = ~(refexplall/(O+Oo)-l/(O,f+Oo)l). 

With a = 4 and O,, = - 0.652 the values calculated by 
this formula are close to those used by Yano [ 111. The 
curve does not deviate much from the one given for 
fresh water head and saturation pressure in the JSME 
steam tables [ 151. Calculations were done for the ref- 
erence case and the three variations using FAST_ 
C(2D) with the same spatial and temporal dis- 
cretizations as used in the constant viscosity case. The 
results for 5000 years simulation time are given in 
Figs. 5-8. 

Comparison with the constant viscosity simulation 
shows some deviations in details, but the classification 
as shown above remains valid with only one exception. 
In the 1 variation a second hot water plume does not 
rise along the vertical boundary above the heat source. 
Therefore the steady-state pattern shows two con- 
vection cells only-instead of three in the constant 
viscosity case. 

Yano [ 1 l] presented results for the reference case 
with variable viscosity. In the transient case his solu- 
tions have four convective eddies above the geo- 
thermal source. In steady state two cells remain with 
ascending hot water above the free (here left) edge of 
the source. The patterns are different from the results 
calculated with constant viscosity by all codes and 
they differ from the results of FAST_C(2D) with 
variable viscosity. It is remarkable that the steady- 
state two-cell pattern of Yano’s variable p simulation 
for the reference case resembles very much the output 
of FAST_C(2D) calculation with variable p for the 
1 variation. 

7. CONCLUSIONS 
Numerical simulations with FAST_C(ZD) code 

confirm results given before by Yusa [7]. Comparison 
of the free convection case with variations of free and 
forced convection shows different flow patterns for all 
four cases. It is obvious that the Rayleigh number is 
not the only parameter characterizing mixed con- 
vection as stated by Prats [6]. The ratio between the 
flow introduced by an outer force and buoyancy has 
to be considered additionally. 

In pure fluid applications with density gradients a 
comparison can be made between buoyancy and iner- 
tia terms in the Euler equation of motion 

p$ = -gradp+Apg 

wherep is dynamic pressure [3]. This leads to a dimen- 
sionless Richardson number! To derive a charac- 
teristic parameter combination with analogous mean- 
ing for the porous media case it is convenient to 
compare the same two terms in the corresponding 
equation : 

pav P 
~~+~v= -gradp+Apg (Y) 
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Fig. 6. Steady-state solution of 1 variation with variable viscosity. 

018 
Fig. 7. Transient solution of 2 variation with variable viscosity. 

Fig. 8. Steady-state solution of 3 variation with variable viscosity. 

[16] or-if time derivative of v is omitted-in Darcy’s 
Law. In the case of forced convection the pressure 
gradient should be the one which is prescribed by 
boundary conditions and which is related to boundary 
velocity ub by Darcy’s Law. 

A new dimensionless constant Co may be intro- 
duced by the definition : 

kApg kApgH K Ra co=-@& =-=--== 
pub w v,H Pe’ 

For a given system the relevant dimensionless con- 
stant Co can be related to Rayleigh number and Peclet 
number (= vbH/rc). Evaluation for the cases with con- 
stant p treated above delivers the results of Table 3. 

It has to be noted that for these applications the 

new dimensionless number does not really compare 
the two terms on the right hand side of equation (Y), 
because a horizontal pressure gradient is compared to 
vertical buoyancy. Nevertheless another gradg would 
make no sense. The values given above characterize 
classes with different convection patterns, for which 
Co-intervals should be investigated by further numeri- 
cal experiments. Simulations with variable viscosity 
indicate that a two-cell steady state exists, which in 
the classification scheme should be placed between the 
reference case and the 1 variation. 
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Table 3. Dimensionless characteristic number for forced and free convection 

co Steady convection flow pattern 

Reference case 
1 var. (low velocity) 
2 var. (medium velocity) 
3 var. (high velocity) 

20:1 
6.80 
4.02 

One steady convection cell 
Three steady convection cells 
No steady state 
No convection 
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